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Tracer dispersion in power law fluids flow through porous media:
Evidence of a cross-over from a logarithmic to a power law
behaviour
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Abstract. An analytical model is presented to describe the dispersion of tracers in a power-law fluid flowing
through a statistically homogeneous and isotropic porous medium. The model is an extension of Saffman’s
approach to the case of non-Newtonian fluids. It is shown that an effective viscosity depending on the
pressure gradient and on the characteristics of the fluid, must be introduced to satisfy Darcy’s law. An
analytical expression of the longitudinal dispersivity λ// is given as a function of the Peclet number Pe and
of the power-law index n that characterizes the dependence of the viscosity on the shear rate (η ∝ γn−1). As
the flow velocity increases the dispersivity obeys an asymptotic power law: λ// ∝ Pe1−n. This asymptotic
regime is achieved at moderate Peclet numbers (Pe ≈ 10) with strongly non-Newtonian fluids (n ≤ 0.6)
and on the contrary at very large values when n goes to 1 (Pe ≥ 104 for n = 0.9). This reflects the
cross-over from a scaling behaviour for n 6= 1 towards a logarithmic behaviour predicted for Newtonian
fluids (n = 1).

PACS. 47.55.Mh Flows through porous media – 47.50.+d Non-Newtonian fluid flows

1 Introduction

Tracer dispersion in porous media is involved in many
industrial processes as well as in environmental and bio-
logical issues [1,2]. Dispersion results from the combined
action of molecular diffusion and convection, their rela-
tive importance being characterized by the Peclet number
Pe (Pe = Ud/Dm in which U and d are the characteris-
tic velocity and grain size and Dm the molecular diffusion
coefficient). In the diffusive regime (Pe � 1), dispersion
only depends on molecular diffusion. On the contrary, in
the convective regime, (Pe � 1), dispersion is dominantly
governed by the velocity distribution inside the porous
medium. This distribution is determined both by the geo-
metrical properties of the porous medium and by the rhe-
ological properties of the fluid flowing through it. Taylor
dispersion is negligible in most 3D porous media. Numer-
ous studies have analyzed the parallel between disorder
and dispersion in the case of Newtonian fluids [3–5]. At
high Pe values, the stochastic velocity fluctuations lead to
mechanical dispersion and result in an effective diffusion
coefficient growing linearly with the Peclet number [6].
However, if stagnant zones are present, they may control
longitudinal dispersion at very high Peclet number values.
Fluid particles and tracers can only escape these stagnant
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regions by molecular diffusion. The coupling of velocity
gradients and molecular diffusion defines hydrodynamic
dispersion. In a pioneering work, Saffman [7] established
that the longitudinal dispersivity (the ratio of the disper-
sion coefficient and the velocity) exhibits a logarithmic
dependence on the Peclet number when disorder is only
due to the random orientation of channels. Stagnant zones
then correspond to the vicinity of pore walls or to channels
nearly perpendicular to the mean flow direction. Baudet
et al. [8] predict a similar singularity of the dispersion
due to the low velocity near stagnation points of the flow
field. Non-mechanical contributions that grow as Pe ln Pe
and Pe2 at high Pe, arise from a diffusive boundary layer
near the solid surfaces and from regions of closed stream-
lines [6]. Experiments performed on non consolidated me-
dia show that the dispersion coefficient increases with an
exponent slightly larger than 1 (around 1.2) with the ve-
locity which may reflect a logarithmic correction [9].

Since Saffman’s work, the effect of disorder on dis-
persion has been studied in three limiting cases; in the
first case, the porous medium is homogeneous at large
scales and heterogeneous at the pore scale resulting in
large variations of the velocity. Porous media character-
ized by a bimodal pore-size distribution like packing of
porous grains, are an example of such media. In this case,
Koch et al. [6] have shown by taking into account retention
inside particles that this hydrodynamic dispersion resulted
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in a diffusivity increasing as Pe2 at high Peclet values. In
the second limiting case, the porous medium is hetero-
geneous at large scales and homogeneous at small scales
like for instance, in stratified porous media [10,11]. More
generally, when porous media are heterogeneous at any
scale, then most of the flow should take place through a
few preferential paths which would increase dispersion [12,
13]. This is the case when the distribution of permeabil-
ity values is very broad. The correlation length of velocity
may become much larger than the characteristic length
(size of grains) of the porous medium [13], so that the
mean-field approximation may be invalid [4,14].

Since a larger disorder of the porous media always re-
sults in an increase of dispersion, it has been suggested
that the measurement of passive tracer dispersion may be
a good tool to characterize heterogeneity [15].

On the other hand, few studies of tracer dispersion
have dealt with non-Newtonian fluids. Their non linear
rheological characteristics modify the velocity distribution
in the pore space and thus influence tracer dispersion. Fur-
thermore, experiments conducted on packings of porous
grains have shown that the use of shear-thinning fluids in-
creases the sensitivity of dispersion to heterogeneity [16].

In a previous paper, one of the authors showed that
Saffman’s approach can be extended to the case of a Bing-
ham fluid [17]. Indeed, in the mean field approximation
we used, we showed that the pressure gradient ∇P still
satisfies Laplace’s equation. The pressure gradient can be
assumed to be uniform throughout the porous medium.
The existence of a yield stress leads then to a cut-off in
the orientation: flow takes place only in channels oriented
at an angle from the mean velocity vector smaller than
a critical value depending on the yield stress and on the
pressure gradient. This results in a dependence of the lon-
gitudinal dispersivity on the yield stress that may be used
to characterize experimentally the pore size distribution.
However, non-Newtonian fluids of practical interest gener-
ally do not behave as simple Bingham fluids but exhibit a
more complex behaviour [18]. For instance, polymer solu-
tions are generally shear thinning, following a power law
such as 0.2 ≤ n < 1 in an extended domain of shear
rates currently ranging from 10−4 to 102 s−1 [19]. In par-
ticular, the shear-thinning effect dominates the rheological
behaviour of semi-rigid polymer solutions [20–22].

In the following, we study the dispersion of passive
tracers in a power-law fluid by considering the case where
rheological characteristics of the the non-Newtonian fluid
remain the same during all the dispersion measurement.
This situation completely differs from other studies in
which a non-Newtonian fluid displaces a Newtonian one
(or the reverse). The shear viscosity, η, is then related to
the local shear rate, γ̇, by a power law: η ∝ γn−1. The
index n can be smaller than 1 (shear thinning fluids) or
larger than 1 (shear thickening fluids). The value n = 1,
corresponds to the case of a Newtonian fluid.

Only homogeneous porous media are considered, so
that the length of decorrelation of fluid velocity may be
assumed of the order of the channel length. This allows
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Fig. 1. The orientation of a pore is repaired by the angle θ
and ϕ. The direction x is the direction of the mean flow of the
fluid through the porous medium.

us to use the mean field approximation as introduced in
Saffman’s approach.

We also assume that the molecular diffusion of the
tracer is independent of the fluid rheological properties.
This has been verified by performing Taylor dispersion
measurements, which is a classical tool to determine the
molecular diffusion coefficient of small species [23,24].
Such measurements performed on capillary tubes [25] have
shown that the molecular diffusion coefficient is not mod-
ified even for viscous concentrated polymeric solutions.

The situation described in the present paper corre-
sponds typically to the case of a polymer solution of
constant moderate concentration flowing in the porous
medium and of a low molecular weight tracer such as ionic
species or radioactive molecules. After describing calcula-
tions of the statistical properties of tracer displacement,
we report analytical results on the flow properties and the
dispersivity in a statistically homogenous and isotropic
porous medium. We find that the dispersivity can be
written as a function of the Peclet number and of the
index n characterizing the power-law fluid. The scaling
behaviour observed at large Peclet numbers and the cross-
over towards the Newtonian case already investigated by
Saffman, are analyzed.

2 Modelling

As in Saffman’s model, the porous medium is modelled
as a set of randomly oriented cylindrical straight chan-
nels of length ` and radius a, the end of each channel be-
ing assumed to be connected to other channels at a pore.
The channel orientation is characterized by angles θ and
ϕ as indicated in Figure 1. The pressure gradient ∇P is
assumed to be uniform throughout the porous medium.
It is oriented along the x-axis as well as the average ve-
locity U of the fluid. U , also called average interstitial
velocity, is given by the spatial average over many pores
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of the x-velocity component in individual channels:

U =

∫ π/2

0

ν(θ) cos θ sin θdθ (1)

where ν(θ) is the average speed inside a channel of ori-
entation θ (i.e. the volume flow rate through the channel
divided by its cross-section area). This average speed is
calculated assuming that the motion of fluid is dominated
by viscosity, the inertia of the fluid being negligible. The
pressure difference ∆P between the ends of a given indi-
vidual channel is a function of θ.

In a convective regime, Pe > 1, tracer dispersion is
described as a random walk with non trivial properties.
Saffman’s approach consists in computing the probability
distribution of the displacement of a single tracer particle
after a given time T . Then, if the distance traveled is large
enough so that paths of initially neighbouring particles
become statistically independent, the dispersion of a cloud
of particles can be deduced.

The probability distribution that the displacement of a
single particle has a given value after a given time is an en-
semble average over many realizations of the model porous
sample. However, assuming ergodic hypothesis to be valid,
this distribution also gives the proportion of fluid parti-
cles, which have a given displacement after a given time,
average on the displacement of many particles throughout
the same porous medium.

The path of a single fluid particle results from statis-
tically independent steps, each one corresponding to the
transit through one channel. The displacement (Xm, Ym,
Zm) of a single particle and the elapsed time Tm after m
steps are defined using the following relationships:

Xm =
∑
i

` cos θi

Ym =
∑
i

` sin θi cosϕi

Zm =
∑
i

` sin θi sinϕi

Tm =
∑
i

`

ν̄i(θi)
· (2)

The average displacement and elapsed time computed over
many realizations are related to the mean values over
many pores by:

Xm = m`x̄ Tm = m
`

ν0
t̄ (3)

with

x̄ =

∫ π/2

0

cos θp(θ)dθ t̄ =

∫ π/2

0

t(θ)p(θ)dθ (4)

where x̄ and t̄ are now dimensionless variables defined with
respect to the length ` of channels and to the average
speed ν(0) = ν0 in the θ = 0 direction and where p(θ) is
the probability for a fluid particle to chose a direction θ.

As a consequence:

Xm

Tm
= U

Xm

Tm
→ U when m→∞. (5)

The latter equation assume that each individual particle
has performed a representative sampling of all velocity
orientations after a long enough time.

Assuming that all orientations are equiprobable, the
probability for a fluid particle to chose a direction θ, when
starting from a pore is proportional to the velocity in this
direction:

p(θ)dθ =
ν(θ) sin θdθ∫ π/2

0
ν(θ) sin θdθ

(6)

as sin θdθ is the fraction of channels in the range θ to
θ + dθ.

If the structure of the medium is such that channels
may be considered as thin compared to their length, then
it can be assumed that tracer concentration is uniform
across the cross-section and that it is convected with the
average speed ν(θ).

An upper cut-off time t0, equal to the time character-
izing molecular diffusion along the length ` of a channel
is introduced and leads to the following rules determining
the dimensionless duration of step i:

ti(θi) =
`

ν(θi)

ν0

`
=

ν0

ν(θi)
if ti ≤ t0 = `ν0/2Dm,

ti(θi) = t0 if ti ≥ t0. (7)

It results a critical angle θ0 such that ti(θ0) = t0 separat-
ing the θ domains where either expression is valid.

The variance σ2
x and σ2

t and covariance σxt of the ran-
dom variables (Xm, Tm) are given by:

(Xm −Xm)2 = m`2σ2
x=m`2

∫ π/2

0

(cos θ−x̄)2p(θ)dθ (8)

(Tm − Tm)2 =
m`2

ν2
0

σ2
t =

∫ θ0

0

(t(θ)− t̄)2p(θ)dθ

+

∫ π/2

θ0

(t0 − t̄)
2p(θ)dθ (9)

(Xm −Xm)(Tm − Tm) =
m`2

ν0
σxt

=
m`2

ν0

(∫ θ0

0

(cos θ − x̄)(t(θ) − t̄)p(θ)dθ

+

∫ θ0

0

(cos θ − x̄)(t0 − t̄)p(θ)dθ

)
(10)

as the domain of θ has been divided in two different parts.
Saffman introduced two dimensionless random vari-

ables χm and τm:

χm =
Xm −Xm

`
√
m

τm =
Tm − Tm
`2

ν2
0

√
m

(11)
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Fig. 2. Analytical results of the longitudinal dispersivity nor-
malized by the pore length l, versus the Peclet number Pe.
The solid line is Saffman’s analytical solution obtained for the
Newtonian case (Eq. (14)). Symbols are the complete exact
solutions given in appendix for various values of the power-lax
index n (◦) 0.99, (•) 0.9, (�) 0.8, (�) 0.6, (4) 0.4. The bro-
ken lines are the approximated functions given in equation (21)
with the corresponding index value.

which have a zero mean and variance and covariance val-
ues σ2

x, σ2
t and σxt as defined in equations (8-10). The

probability distribution of the number m of steps during
the time T was then computed, where m is now a random
variable m(τ ;T ) and T is fixed. Computing the longitudi-
nal displacement X of a single particle after time T from
equation (11):

X = `
√
mχm +m(τ, T )`x̄ (12)

and assuming that the probability distribution of χm and
τm approximated that of χm and τm at high m values, the
general expression of the normalized longitudinal disper-
sivity λ// can be written:

λ// =
D//

U`
=

1

2x̄

(
σ2
x − 2

U

ν0
σxt +

U2

ν2
0

σ2
t

)
· (13)

In the case of a Newtonian fluid, the analytical function
deduced from equation (13) is the logarithmic variation of
the normalized dispersivity with Pe obtained by Saffman:

λ// =
1

6
ln

(
3Pe

2

)
−

1

24
· (14)

This variation is represented by a continuous full line in
Figure 2. At all Peclet number values, λ// remains small.

For very large Peclet numbers greater than 107, λ// is of
the order of 3. In the range of values generally encountered
in experiments (Pe ∼= 10−1000), λ// is close to 1.

Let us now generalize these calculations to the case
of a power-law fluid. Due to the dependence of viscosity
on the shear gradient, the velocity distribution inside the

porous medium is modified. In channels with an angle θ
with respect to U , the average speed is given by [18]:

ν(θ)=ν(0)cos θ1/n with ν(0)=
n

3n+1
a

(
a∇P

2K

)1/n

=ν0

(15)

where K is the prefactor of the power law (η = Kγ̇n−1)
characterizing the non-Newtonian rheological characteris-
tics of the fluid. From equations (4) and (15), we can then
calculate the probability distribution p(θ):

p(θ) =
n+ 1

n
sin θ cos θ1/n. (16)

For a shear thinning fluid (n < 1), since the effective vis-
cosity is smaller in the channels where the velocity is large,
and conversely larger in the channels where the velocity
is small, the velocity distribution is widened by the non-
Newtonian properties of the fluid. On the contrary, if the
fluid is shear thickening (n < 1), then the non-Newtonian
properties of the fluid lead to a narrowing of the velocity
distribution.

3 Average velocity

Before considering tracer dispersion, it is interesting to
investigate the properties of the mean average velocity U .
From equations (1, 15), we find:

U =
n2

(3n+ 1)(2n+ 1)
a(n+1)/n

(
∇P

2K

)1/n

. (17)

The relationship between the average velocity U and the
pressure gradient∇P becomes non linear as soon as n 6= 1.
Thus, in order to recover the usual Darcy’s law, an effec-
tive viscosity depending on the flow rate has to be in-
troduced; the permeability is always assumed to be inde-
pendent of the rheological properties of the fluid flowing
through the porous medium.

Most permeability measurement studies have dealt
with shear thinning polymer solutions. The interpreta-
tion of data generally shows a good agreement with that
expected from the power-law shear viscosity dependence
[26–29]. However, several limitations have been encoun-
tered which will also arise in the case of tracer dispersion
investigations. First, the power-law variation of the vis-
cosity is observed to hold only in a finite range of shear
rates. A Newtonian plateau region is often observed at low
shear rates and at also large shear rates. Second, wall ef-
fects often appear when solutions of high molecular weight
macromolecules flow in a porous medium [20,26,30]. De-
pending on the attractive or repulsive interaction between
the macromolecules and the pore walls, the effective vis-
cosity in the porous medium can be larger or, respectively,
smaller than the viscosity measured with a rheometer.
These walls effect are expected to be particularly impor-
tant for small pore sizes. Third, at high flow rates, a large
enhancement of the flow resistance appears above a well
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defined low velocity threshold [26,31–33]. This latter de-
viation from the variation calculated for a power-law fluid
arises from its time dependent properties and from the in-
crease of elongational flow components due to rapid vari-
ations of the cross-section area of pore channels. Recent
experiments performed on dilute solutions show that poly-
mers then undergo a large conformation change and that
an apparent “coil-stretch” transition takes place [33]. This
effect is particularly important for large molecular weight
polymers and large polymer concentrations [31,32]. It is
to note that, in the case of rigid macromolecules, no flow
resistance enhancement occurs and that, even at large flow
rates, the observed behaviour agrees with that expected
for a power-law fluid [34]. In the following, we do not con-
sider these limitations and we assume that the fluid flow-
ing inside the medium is well described by a power-law
shear viscosity.

4 Dispersivity

The analytical expression of the dispersivity is calculated
following the same procedure as Saffman. First we derive
from equations (3, 5, 8-10) and (15) the statistical prop-
erties of the displacement and time distributions after m
steps defined in equations (2) taking into account the an-
gular probability distribution given by equation (16). The
dispersivity is calculated using the general expression in
equation (13). Calculations are straightforward and de-
tails are not reported here. The complete expressions are
given in Appendix. Variations of the normalized disper-
sivity with the Peclet number are displayed in Figure 2
with double logarithmic scales. Each symbol refers to a
given value of n as indicated on the plot; only the case of
shear thinning fluids (n < 1) is considered here. The solid
line corresponds to the logarithmic behaviour found by
Saffman. As expected, we observe that, for a given value
of the Peclet number, λ// increases for decreasing values of
n. This is related as previously discussed, to the increase
of the velocity distribution width due to shear thinning.
In the limit of low Peclet numbers, all the curves collapse
towards a same behaviour. In this limit, tracer dispersion
is mainly due to molecular diffusion and thus is indepen-
dent of the rheological properties of the fluid. Note that
Saffman’s model does not apply for Pe ≤ 1. For a given
value of n, λ// increases monotonously with the Peclet
number. This variation is particularly fast for the small-
est values of n demonstrating the large influence of shear
thinning properties on tracer dispersion.

As the complete expression of λ// is quite long we
looked for an approximate function λapp. It can be seen
in equation (13) that the dispersivity is the sum of three
terms proportional respectively to σ2

x, σxt and σ2
t . The first

one is constant and the second one decreases when the
Peclet number increases. The dependence on the Peclet
number is however dominantly controlled by the third one.
We use thus the approximate value:

λapp =
1

2x̄

U2

ν2
0

σ2
t . (18)

The variance σ2
t is itself the sum of two terms (Eq. (9)).

Assuming that the transit time distribution is broad, then
the square of the average is negligible compared to the
average of square. The first term can then be reduced to:∫ θ0

0

(t(θ)− t̄)2p(θ)dθ =

∫ θ0

0

t2(θ)p(θ)dθ. (19)

The second term is∫ π/2

θ0

(t0 − t̄)
2p(θ)dθ = (t0 − t̄)

2 cos θ
(n+1)/n
0 . (20)

This term is constant for Newtonian fluids but increases
with the Peclet number when n 6= 1. The following ap-
proximate expression of the dispersivity is then deduced
from (Eqs. (19, 20)) as:

λapp =
n2

(n− 1)(n+ 1)(2n+ 1)

[
1−

(
2n

2n+ 1

1

Pe

)n−1
]
·

(21)

This approximate form λapp fits very well the exact so-
lutions over broad ranges of n and Peclet number values
(the variations of λapp with Pe are represented by bro-
ken lines on Fig. 2). The relative error (λapp − λ//)/λ// is
always smaller than 1%. Calculations show that this ap-
proximate function is also valid for n > 1, but obviously
does not apply when n = 1.

For strongly non-Newtonian fluids (n ≤ 0.6), the vari-
ation of the normalized dispersivity with the Peclet num-
ber indicates a power law dependence of λ// on Pe (the
points fall on straight lines in the log-log representation of
Fig. 2). An asymptotic power law with an exponent equal
to α = 1−n is also expected at high Peclet numbers from
the approximate form given by equation (21). In order to
analyze this point more quantitatively, we have computed
the local slope αloc of the curves of Figure 2 fitting log(λ//)
versus log(Pe) to a linear variation within different ranges
of the Peclet number. The results are reported in Figure 3
which displays the variation of αloc with n. The solid line
in Figure 3 is the theoretical relationship deduced from
the approximate form: α = 1−n. This asymptotic regime
is achieved at low Peclet numbers when n ≤ 0.6 i.e. for
strongly non- Newtonian fluids. On the contrary when n
goes to 1, the asymptotic regime is only reached for very
high values of the Peclet number (greater than 2×107 for
n = 0.9). The displacement of the limit of validity of the
power law approximation towards larger and larger Peclet
numbers as n goes to 1 reflects the cross-over from a scal-
ing behaviour for n 6= 1 towards a logarithmic behaviour
for n = 1 (Newtonian fluid).

5 Conclusion

The generalization of Saffman’s approach to the case of
non-Newtonian power-law fluids allows to calculate the
dispersion of a tracer in such fluids though a statistically
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Fig. 3. Local slope of the longitudinal dispersivity as a func-
tion of the power law index of the fluid for three ranges
of the Peclet number values. (H) 100–200; (O) 1000–2000;
(N) 107 to 2× 107.

homogeneous porous medium. In the case of shear thin-
ning fluids such as polymer solutions, a large enhance-
ment of the dispersivity is predicted; this enhancement is
particularly important for large values of the Peclet num-
ber and small values of the power-law viscosity exponent
(strongly non-Newtonian fluids). We have derived an ap-
proximate expression which reproduces well the results
of exact computations in an extended domain of Peclet
numbers. Finally, we demonstrate that, for large Peclet
numbers, the normalized dispersivity λ// follows a power

law λ// ∝ Pe1−n in which n is the viscosity exponent.
The extent of the range of Peclet numbers over which this
law is valid depends on n: for small n values (strongly
non-Newtonian fluids), it lower bound corresponds to Pe
as small as 10, while, when n tends towards 1, this lower
limit diverges to infinity. This is to be related to the tran-
sition to the logarithmic behaviour found for Newtonian
fluids (n = 1).

The large enhancement of the normalized tracer dis-
persivity predicted for shear thinning fluids and its strong
dependence on the rheological properties provide a good
way to investigate the heterogeneities of porous media
with enhanced sensitivity. Changing the power-law expo-
nent of the viscosity can be easily done by changing the
concentration of the polymer solutions and gives a tunable
parameter allowing to obtain informations on the hetero-
geneity of the medium. Other rheological properties of the
fluid such as the elongational viscosity, normal stress dif-
ferences and non linear viscoelasticity may also play a role
in dispersion and have to be considered in a further re-
search [18].

Extensions of these calculations to model heteroge-
neous porous media (such as double porosity media) will
be presented in a second paper. Considering the case of
strongly heterogeneous porous media, the flow concentra-
tion in preferential channels should be enhanced while
it will be reduced further in low velocity zones when

shear-thinning fluids are involved. In particular, percola-
tion like effects may be expected with a fluid with a well
defined flow threshold like Bingham fluids. Flow velocity
fields with large correlation lengths may result in this case
but such problems are expected to be important only for
extremely broad distributions of apertures of individual
channels as is the case for instance in fractured media.

Appendix

The following expressions are the results of exact calcula-
tions of the different terms given by equations (5, 8-10).
All variables are dimensionless with respect to the length
` of channels and the average speed ν0 inside a channel
oriented in the θ = 0 direction.

x̄ =
n+ 1

2n+ 1
and t̄ =

n+ 1

n

σ2
x =

n+ 1

3n+ 1
−

(n+ 1)2

(2n+ 1)2

σxt =
n+ 1

2n
sin θ2

0 +
n+ 1

2n+ 1
t̄(cos θ

(2n+1)/n
0 − 1)

+
(n+ 1)2

n(2n+ 1)
(cos θ0 − 1)−

n+ 1

2n+ 1
t̄(cos θ

(n+1)/n
0 − 1)

+ (t0− t̄)
n+1

2n+1
cos θ

(2n+1)/n
0 )−

(t0− t̄)(n+1)

2n+1
cos θ

(n+1)/n
0

σ2
t =

n+ 1

n− 1
(1− cos θ

(n−1)/n
0 ) + 2t̄

n+ 1

n
(cos θ0 − 1)

+ t̄2(1− cos θ
(n+1)/n)
0 + (t0 − t̄)

2(cos θ0 − 1)

with cos θ0 =
1

tn0
and t0 =

2n+ 1

2n
Pe where the Peclet

number Pe is defined with respect to the average velocity
U of the fluid.
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